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Abstract
Safe robot navigation in human-centered environments is important to avoid collisions. A major limitation of the traditional 
path planning algorithms is that the global path is planned only with the knowledge of static obstacles in the map. This paper 
presents a novel ‘HMRP (heat map-based robot path planner)’ which uses fixed external cameras to generate a heat map of 
different passages based on congestion, so that robots can generate congestion-free paths at the global planning stage itself. 
The congestion values are maintained in a database and the paths are classified into hot and cold regions. Robot navigation 
is affected by the direction of movement of people. Hence, in this work, the HMRP-based planner also considers the direc-
tion of movement of people in passages which improves robot navigation. The proposed HMRP is compared with traditional 
path planning algorithms in real environment. Results show that the proposed HMRP algorithm generates congestion-free 
paths for safe robot navigation.

Keywords Robot navigation · Heat map · Path planning

1 Introduction

Autonomous mobile robots are used at many human-cen-
tered environments like hospitals, warehouses, and other 
public places to provide different services like cleaning, 
surveillance, and delivery. Although many robust path plan-
ning algorithms have been proposed, there is always a risk of 
collision with people in these environments causing injury. 
Thus, measures to increase safety in mobile robot navigation 
becomes indispensable to ensure the safety of people.

Path planning includes global and local planning. Once 
a global path has been planned, the robot starts navigation 
on it and later avoids collision with people using any of 
the state-of-the-art algorithms like [12]. Regarding local 

collision avoidance, the most recent works shows promis-
ing results for safe autonomous navigation in indoor [12, 15, 
19], and outdoor [10] cases. A review of safe robot naviga-
tion is given in [21]. In traditional path planning algorithms, 
generation of the global path is based on the information of 
the static obstacles and free space in the map. Once the robot 
starts navigating on the global path, the local dynamic obsta-
cles are avoided through local planning algorithms which 
includes trajectory alteration [15, 23] and other approaches 
like dynamic window approach [1, 7]. The global path gen-
eration is mainly based on the shortest path criteria. How-
ever, it is possible that the shortest path might be congested. 
The information about congestion in different paths is una-
vailable to the robots. A robot could plan a congestion-free 
path if the congestion information was available to it. The 
congestion-free path could be slightly longer, however, it 
would be safer for navigation. In the absence of congestion 
information, a robot cannot plan trajectories through the 
congestion-free passages. Hence, this is a limitation. In pre-
vious works [20, 22] which also discusses the problems due 
to unavailability of remote information in the environment, 
a knowledge-sharing algorithm through which the robots can 
share information about the new obstacles and congestion in 
the map with other robots has been proposed. However, the 
global path generation was still based on the shortest path 
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criteria and information sharing was only possible when a 
robot actually visits particular areas of the map which is not 
guaranteed. Hence, lack of congestion information on dif-
ferent paths adversely affects path planning.

In previous works, many researchers have addressed the 
problem of robot navigation in human-centric environments 
using external sensors. Nitta et al. [4] proposed an algorithm 
for robot path planning which uses pedestrian information 
map which is generated from human trajectories logged 
using sample-based join probabilistic data association fil-
ters with a laser range finder (LRF). Similarly, anticipatory 
robot path planning in human environments is proposed 
in [4] which tries to give anticipation ability to a robot by 
simulating people’s reaction to robot’s motion during plan-
ning. They also use a torso-level Hokuyo LRF scanner for 
person tracking. Laser range finder is used for the detec-
tion and tracking of human legs for person identification in 
environment in [3], while an environmental map describing 
the walking activity of people including walking dynamics 
is proposed in [13] using LRF sensor. Visual sensors have 
been in used in [24], in which the human walking trajecto-
ries are obtained from distributed sensors and frequently 
used paths in the environment are extracted. Similarly, in 
[25], human path patterns are extracted for mobile robot 
navigation using distributed sensors in which the global 
position of the mobile robot can be directly measured using 
external sensors, which makes the localization problem. The 
localization problem is also addressed in [16, 31] through 
optimal placement of passive sensors in the environment. 
These approaches have a merit of reducing the sensors on 
the robot side, thereby reducing the cost, weight and prob-
ability of hardware faults. On the other hand, some research-
ers have addressed the problem of mobile robot navigation 
in human-centric environments by modeling social force 
model (SFM) [30] in robot’s navigation. In [26], authors 
have dealt with situation where two walkers have crossing 
trajectories. Based on these human trajectories involving a 
collision avoidance task, the total effort is determined and 
shared between each walker depending on several factors of 
the interaction such as crossing angle, time to collision and 
speed. In [2], authors have proposed a planning framework 
that uses communication during mobile robot navigation in 
a manner that humans find understandable using wearable 
haptic interface and the vibration motor. Social navigation 
model based on human intention analysis using face orienta-
tion is proposed in [17], in which, the trajectories of humans 
are classified based on the face orientation on a social force 
model and their predicted motion.

However, most of the previous approaches use LRF sen-
sors which are expensive and setting multiple LRFs in the 
environment is not always feasible. Comparatively, visual 
sensors like cameras are not expensive to setup and many 
buildings already have security cameras installed. Previous 

works employing visual sensors usually work with grid maps 
to estimate people’s trajectories. However, directly work-
ing with individual grid coordinates of the map results in 
enormous space complexity and communicating the raw 
trajectory information to robots is expensive in terms of 
bandwidth. To overcome these limitations, this paper pre-
sents a novel HMRP: a heat map-based robot path planner 
for service robots. A heat map is generated from the cameras 
fixed in different passages and areas that track the net influx 
of people, in different times. Based on this historical data 
maintained in a database, the paths are classified into various 
categories based on the congestion at different times. The 
passages with large movement of people are the hot portions 
of the map. On the other hand, passages with less movement 
of people are the cold areas. The hot and cold areas of the 
map vary with time. Access to these hot and cold areas ena-
bles a robot to plan better paths through less congested areas. 
The local collision avoidance is done by traditional algo-
rithms [12]. However, with the proposed HMRP algorithm, 
the dynamic obstacle avoidance algorithms also benefit as 
the selected path has less number of dynamic obstacles. This 
also ensures a faster service time and safe navigation. The 
space complexity problem is addressed using a novel ‘node 
map’ representation which drastically reduces the amount 
of data to be communicated to the robots.

Traditionally, information from external cameras has been 
used mainly for surveillance and monitoring. The proposed 
work uses fixed external cameras to detect congestion in 
passages and incorporate this information in robot’s path 
planning. The gist of novel contribution of the proposed 
work lies in camera–robot network for congestion-free path 
planning. The novel contributions of the proposed work are 
summarized below: 

1. The proposed work uses fixed cameras in corridors to 
estimate congestion. The proposed work also estimates 
the heap value based on the direction of movement of 
people in corridors.

2. Fixed camera-based heat map estimation in the proposed 
work is done while considering the direction of traffic 
flow. This has a significant improvement on path plan-
ning from a practical point of view.

3. A way to incorporate the heat map’s value in grid-based 
path planning is proposed by altering movement cost.

4. A node map is proposed which simplifies communica-
tion and fusing congestion information in robot’s path 
planning.

5. The proposed work uses historical congestion informa-
tion in robot path planning for situations when real-time 
congestion information is not available.

Thus, robots are able to plan better paths through less con-
gested passages which results in safer navigation.
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2  Generation of grid map

To quantitatively estimate the congestion in different 
parts of the service area, it is important to first construct 
a grid map and thereby a node map of the environment. 
A grid map discretizes the world into cells. Each cell is a 
binary random variable that models if a cell mi is occupied 
p(mi) → 1 , free p(mi) → 0 , or unknown p(mi) → 0.5 . It is 
assumed that the map is static and the cells are independ-
ent. The probability distribution of the map is given by the 
product over the cells, p(m) =

∏
i
p(mi) . Given sensor data 

z1∶t and the poses x1∶t of the sensor, the goal is to estimate 
the map,

 The pseudo-code for grid map generation is shown in Algo-
rithm 1. It uses an inverse measurement model (Algo.1, Line 
7) for robots equipped with range finders. The robot pose is 
supposed to be (x, y, �)T . Lines 7–16 calculate the inverse 
model [29] by first determining the beam index k and the 
range r for the center-of-mass of the cell mi . Moreover, for 
ease of computation, log-odds ratio lt,i and l0 are used and 
defined as,

The algorithm for grid map generation is given in Algo-
rithm 1, in which, � is the thickness of obstacles, and �  is the 
width of a sensor beam. These are sensor-specific parameters 
and other algorithms for grid mapping can also be used [29].

(1)p(m|z1∶t, x1∶t) =
∏
i

p(mi|z1∶t, x1∶t).

(2)
lt,i = log

p(m|z1∶t, x1∶t)
1 − p(m|z1∶t, x1∶t) ,

l0 = log
p(mi = 0)

p(mi = 1)
= log

p(mi)

1 − p(mi)
.

3  Generation of node map

We define ‘node’ as a point of turn in a path of the map. 
All the paths of the map are represented as a network of 
these nodes. Figure 1 shows the node representation of 
the path. The nodes n1, n2,… , n7 are the points of turns in 
the map. The pseudo-code for generating a node map is 
given in Algorithm 2. The input to the algorithm is a grid 
map with obstacles (black), open (white), and unknown 
(grey) areas. The first step is to generate a binary image 
of the grid map which is done by turning all unknown 
cells mi to blocked (black) value, indicated by lines 2–5 
of Algorithm 2. Noise is removed by successively apply-
ing morphological erode and dilate operations [8]. The 
next step is to apply skeletonization algorithm [32]. For 
example, skeletonization of binary map in Fig. 2a is shown 
in Fig. 2b. Many skeletonization and thinning algorithms 
generate unnecessary tentacles which needs to be removed 
using pruning algorithm. Line segments are then detected 
using techniques like SVD or Hough Transform [18] 
(Fig. 2c). The end points of segments which are within 
a small threshold distance � as shown in Fig. 2d are clus-
tered into a single node ‘n’ as shown in Fig. 2e. A graph 
‘m’ of these nodes {n1, n2,… , nm} form the node map of 
the environment.

n1

n2

n3

n4

n5 n6

n7

Fig. 1  Node representation of map
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The advantages of using a node map instead of a grid 
map are: 

1. The task of placing external cameras on the nodes 
becomes easy. Moreover, depending on the field-of-
view (FOV) of the camera, ‘sub-nodes’ can be inserted 
between two nodes which are placed at a large distance.

2. It becomes easier to discretize the flow between various 
portions of the map. Moreover, these discrete segments 
can later be correlated to various time zones, which will 
be explained in Sect. 4.

3. Mathematically modeling the net influx of people from 
other nodes becomes easier.

4. Congestion across the edges of the node map require less 
memory for storage and can quickly be communicated 
to the robots as against previous works which work on 
individual grid pixel-based heat map estimation.

Figure 3 shows several nodes with a sub-node. If �(⋅) rep-
resents the net influx, then two corollaries can be given.

Corollary 1 If A′ is a sub-node between nodes A and B, then 
𝛷( �����⃗BA�) = 𝛷( �����⃗A�A) , and 𝛷( �����⃗AA�) = 𝛷( �����⃗A�B) (Fig. 3)

Proof of Corollary 1 is straightforward from the prop-
erty of sub-node which is defined as an intermediate point 
with no turn. Hence, from Fig. 3, �(A�) = 0.

Corollary 2 The net directional influx at node is equal to 
the sum of directional influxes from other nodes joining that 
node. From Fig.3,

Proof of Corollary 2 follows from Corollary 1 and the 
assumption that directional flow of entity does not change 
between two nodes, and 𝛷(����⃗AB) ≠ 𝛷(����⃗BA).

4  Congestion detection with fixed external 
camera

The fixed cameras are placed at several nodes in the map 
to detect people in passages. Once a person’s position in 
the camera image is found, we can calculate its position in 
the world coordinate system through camera calibration. 
It defines relation between image and world coordinate 
system using a pinhole camera model shown in Fig. 4. This 
relationship is given by,

where A is an upper triangular intrinsic parameter matrix 
with ( fx, fy ) as the focal lengths in pixels, and [cx, cy]T is the 
principal point at the center of the image. Extrinsic param-
eter matrix [R|t] comprises rotation matrix (R) and trans-
lation vector (t). HMRP assumes that the camera is fixed. 
[xw, yw, zw]

T are the coordinates of the robot in world space 
which are mapped to the image coordinates [u, v]T in pixels.

Although there are different ways to detect moving 
people in images, this work uses a method of foreground 
pixel detection from a robust background. A robust back-
ground �� ∈ ℝ

2 is first generated from current camera 
frame �t ∈ ℝ

2 at time ‘t’ to cope with illumination changes 
and obstruction by static obstacles in the corridor. For the 
purpose of robustness, two or more background images 
are generated using different learning rates �i , as given 
in Eq. 6.

(3)𝛷(����⃗AB) =

m∑
1

𝛷(�����⃗niA) −

m∑
1

𝛷(�����⃗Ani).

(4)m =A [ R | t ]M�,

(5)s

⎡
⎢⎢⎣

u

v

1

⎤
⎥⎥⎦
=

⎡⎢⎢⎣

fx 0 cx
0 fy cy
0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3

⎤
⎥⎥⎦

⎡⎢⎢⎢⎣

xw
yw
zw
1

⎤⎥⎥⎥⎦

(a) (b) (c) (d) (e)

δa b

c

a b

c

n

Fig. 2  Node map generation. a Binary map. b Skeleton map. c Hough lines. d Cluster within � . e Clustered node n 

B AA'

D

E

n1

n2
n3

nm

Fig. 3  Influx �(⋅) at nodes and sub-nodes
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The coordinates of the moving entities �p(x, y) ∈ ℝ
2 are 

computed by probabilistic difference between the current 
frame �t and the two background images ��slow , and ��fast . 
All the pixels where the difference value is more than �  are 
marked as moving foreground pixels, as given in Eq. 7.

4.1  Mapping grid pixel to vertex with directional 
influence and profile generation

We define a function �(⋅) (Eq. 8) which maps the coordi-
nates of �p(x, y) to the nearest edge of the node map. This 
mapping is achieved through a normal ⟂ from the edge 
( �i ) to the detected hot-pixel coordinate. The heat value 
of the edge ( �i ) given by ℍ(�i) is increased proportional to 
the total hot pixels mapped. For each detection of a mov-
ing person, multiple hot pixels may be mapped to the edge. 
The direction of movement of people influences robot nav-
igation. As shown in Fig. 5, robot navigation is relatively 
easy if it is moving in the same direction as it can safely 

(6)
��slow(x, y) = 𝜆slow �t(x, y)⊕ (1 − 𝜆slow) �t−1(x, y),

��fast(x, y) = 𝜆fast �t(x, y)⊕ (1 − 𝜆fast) �t−1(x, y).

(7)�p ← f (�t,��slow,��fast,� ).

follow the person. However, robot trajectory needs to be 
altered to avoid collision with person approaching from 
the opposite direction. This effect is controlled by weight 
factor 𝛼 (0 < 𝛼 < 1) which is set to a large value for person 
approaching from the opposite direction. The direction is 
estimated by optical flow or increasing pixels.

where � is a constant weight used to control the effect of 
increase in edge hotness from ‘n’ hot pixels. The ℍ value is 
calculated by Eq. 9 using the ���� function,

The parameter � incorporates the direction of traffic and 
affects ℍi which later affects the obstacle weights in the grid 
map. Hence, path planning is also improved comparatively.

A profile for each edge �i is generated in intervals of 
period �T  by accumulating the heat value ( ℍi ) of each 
edge in the node map (in Table 1, �T = 30min ). This data 
are stored in a dictionary � (Eq. 10) which maintains the 
historical data of the heat values across each edge. The 
dictionary stores data in {key:value} pair. A robot 
can access this dictionary through a key �i to get the 

(8)�(�p ↦ �i, ℍi, �, �), � ∶ ℝ
2
→ ℝ,

(9)ℍ
t+1
i

← ℍ
t
i
+

⌈
� ⋅

n

�

⌉
. ℍi → ℝ

Table 1  Database of heat value 
ℍ

i
(�

i
) considering direction. 

Congested paths are marked in 
bold and free paths in italic

Date (day) Time interval E(�������⃗n1n2) E(�������⃗n2n3) E(�������⃗n3n4) ⋯ E(�������⃗n4n1)

23-10-2018 (Tues) 11:00-11:30 59 3 18 ⋯ 14
11:30-12:00 103 10 37 33
12:00-12:30 112 35 52 88
12:30-13:00 95 37 67 84
⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯

24-10-2018 (Wed) 12:00-12:30 125 23 43 65
12:30-13:00 102 12 69 71
⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯

25-10-2018 ⋯⋯ ⋯ ⋯ ⋯ ⋯ ⋯

x

y

z

wx

y
w

zw

(cx,cy)
v

u

Person
coordinate

World
coordinate

Camera
coordinate

Image
coordinate

z

yxp

Fig. 4  Camera and world frame

Fig. 5  Influence of direction on weight. Collision avoidance of people 
coming from opposite direction is more difficult
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corresponding heat value ( ℍi ) which gives an estimation 
about the crowd in that passage.

Table 1 shows the database of heat value ℍi(�i) at various 
nodes in a time interval ( �T) of 30 min. Congested paths 
with heat value ℍ ≥ 80 are shown in red. These edges mark 
congested portions of the map during the respective time.

5  Path planning on heat map

In this section, we discuss how congestion information is 
fused in path planning. Our implementation uses A* algo-
rithm whose details can be found in [5, 9, 11]. Any other path 
planning algorithm which uses a costmap for movement in a 
map like D* algorithm [28], Focussed D* [27], or Dijkstra’s 
algorithm [6] can also be used. The heat value ℍi is reflected 
in path planning by increasing the robot’s movement cost in 
corresponding grids. The cost Wb

i
 of movement of robot in the 

map is set beforehand. In case of a grid map, the cost is gener-
ally set to 1 unit in perpendicular directions, and 

√
2 units in 

diagonal directions, in free space. Congestion information is 
fused by increasing the cost of movement in grids with high 
congestion. The proposed work uses a node map with edges 
�i for efficiency. HMRP increments the cost by a weighted 
average Ŵc

i
 of the corresponding current heat value ℍt

i
 and the 

average of previous value ℍt−1
i

 (Eq. 11). If the current value is 
not available, � is set to 0. We briefly explain the A* algorithm-
based path planning. Let G = (V,E) is a graph with non-nega-
tive edge distances, and h(⋅) is an admissible heuristic. Let S be 
the start location and G be the goal node of the robot. If d(v) is 
the shortest distance from S to v seen so far, then d(v) + h(v) 
gives an estimate of the distance from S to v and similarly 
from v to G . The queue of nodes Qh = (V1,V2,⋯ , Vn) sorted 
by d(v) + h(v) is the A* path from S to G . The incremented 
cost W+

i,obs
 is used to calculate the shortest path. The cost of 

movement across grids along an edge of higher congestion is 
increased. Thus, costmap-based planner estimates paths with 
lower congestion.

6  Experiments and results

Experiments were carried in real environment to test HMRP. 
Pioneer-P3DX (Fig. 6a) was used, which was equipped with 
distance sensors (Microsoft Kinect and UHG-08LX laser 

(10)𝔻 ≡

{
�i, ∶

�T∑
t=1

ℍ
t+T
i

( �i )

}
.

(11)
Ŵc

i
← � ℍ

t
i
(�i) + (1 − �)ℍt−1

i
(�i),

W+

i,obs
← Wb

i
+ Ŵc

i

range sensor) and cameras. The experiment environment is 
shown in Fig. 7a. Raspberry-Pi 3 model B+ was used for 
external camera node which features a 1.4GHz 64-bit quad-
core ARM Cortex-A53 CPU with 1GB RAM. The camera 
node was operated at 10 FPS with VGA resolution. The cam-
era was set at a height of 238 cm above the ground. Cam-
eras should be setup at considerable height so that a complete 
occlusion of camera by obstacles is improbable. The distance 
sensor is accurate within ±30 mm within 1 m and within 3% 
of the detected distance between 1 and 8 m. The angular reso-
lution is approximately 0.36 degrees. We first describe the 
motion model of the robot. The distance between the left and 
the right wheel is Wr and the robot state at position P is given 
as [ x, y, � ]. From Fig. 6b, turning angle � ≠ 0 and radius of 
turn R is calculated as,

The coordinates of the center of rotation (C, in Fig. 6b), and 
new heading �′ are calculated as,

from which the coordinates of the new position P′ are cal-
culated as

If r = l , i.e., if the robot motion is straight, the state param-
eters are given as �� = � , and,

The experiments were set without real-time camera ℍi infor-
mation and � in Eq. 11 was set to 0 using only previous 
data. � in Eq. 9 was set to 0.6. The grid map with nodes 

(12)r = � ⋅ (R +Wr), l = � ⋅ R, ∴� =
r − l

Wr

, R =
l

�
.

(13)

[
Cx

Cy

]
=

[
x

y

]
−

(
R +

Wr

2

)
⋅

[
sin�

−cos�

]
, �� = (� + �)mod2�,

(14)

[
x�

y�

]
=

[
Cx

Cy

]
−

(
R +

Wr

2

)
⋅

[
sin��

−cos��

]
, � ≠ 0 ⟹ r ≠ l.

(15)
[
x�

y�

]
=

[
x

y

]
+ l ⋅

[
cos�

sin�

]
, (l = r).

Fig. 6  Real experiment setup. a Pioneer P3DX, b motion model
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n1,⋯ , n5 is shown in Fig. 8a. The resolution of grid map 
was set to 0.1 m per occupancy grid. The equivalent node 
map is shown in Fig. 8b in which ni is an intermediate node. 
Robot’s start ( S ), and goal ( G ) locations are marked along 
with the cafeteria. The experiment was conducted during 
the peak lunch time of university (12:30–13:00) to test path 
planning in congestion. The alternate paths of the environ-
ment had relatively less congestion during this time. A* 
algorithm [9] was chosen for path planning, however, any 
other algorithm can also be chosen. The grid-based navi-
gation had one unit cost for forward, back, left, and right 
movement, whereas, for diagonal movement the cost was 

√
2 

units. Table 2 summarizes the paths planned with traditional 
and proposed method. Table 3 shows the results of ℍ-score 
in different passages of Fig. 8a in which the highly conges-
tion and relatively free paths are marked. Figure 8c shows a 
scenario in which the person is moving in the same direction 
as that of robot. The shortest path length without HMRP was 
2042 units, whereas the path length with HMRP was 2491 
units. Figure 7b–e shows some results of people detection in 
passages. Notice that HMRP path is 21.9% longer than the 
shortest path. However, the shorter path had more conges-
tion, while the HMRP path had less congestion and therefore 
safer for robot navigation. Since the same dimensions of the 
costmap was used for path planning using the A* algorithm, 

the computation time for both traditional and the proposed 
algorithm was the same. The overhead of fusing congestion 
information in the costmap in the proposed algorithm was 
1.3 s for the gridmap shown in Fig. 8a. Since global path is 
planned once during the start of navigation of the robot, this 
overhead time is minuscule.

The proposed node map simplifies communicating 
information with the robot. If the dimensions of the map 
are Wm × Hm , where Wm and Hm are the width and height, 
respectively, and the map is divided into small grids of 

Fig. 7  Congestion detection using external camera. a Passage environment. ( b ∼ e ) People detection
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Fig. 8  Real experiment setup. a Pioneer P3DX, b motion model. c Grid map of the environment of Fig. 7a. Robot’s start ( S ) and goal ( G ) loca-
tions, and cafeteria are marked. d Node map. e People moving in the direction of robot

Table 2  Generated paths with and without virtual obstacles

Method Path Path length

Traditional S → n5 → n1 → n2 → G 2042
Proposed S → n5 → n4 → n3 → n2 2491

Table 3  Effect of movement direction on ℍ-score

Method Path ℍ-score

HMRP �������⃗n4n1 + �������⃗n1n2 174
�������⃗n5n4 + �������⃗n4n3 + �������⃗n3n2 96
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dimensions �w × �h , the total number of small grids ( Ngrids ) 
in the map are,

Hence, in previous works [4, 14], a huge amount of conges-
tion information proportional to Ngrids =

Wm×Hm

�w×�h
 at the level 

of individual grid pixels needs to be communicated to the 
robots, which is not efficient. The proposed approach uses a 
node map with edges over which the heat values represents 
congestion and hence there is a scalar value over each edge. 
In the proposed work, the amount of information communi-
cated to the robots is proportional to Nedges , where Nedges is 
the total number of edges in the map which are few and 
Nedges << Ngrids . Hence, information is communicated 
quickly in the form of a dictionary ( � ) of key-value pair 
where the keys are the edges and the values represent the 
h e a t  v a l u e  o r  c o n g e s t i o n  a s 
𝔻 = {(𝔼1 ∶ ℍ1), (𝔼2 ∶ ℍ2),⋯ , (𝔼Nedges

∶ ℍNedges
)} . Due to the 

same simple representation in a dictionary form, there is no 
need for a graphical representation showing hot and cold 
regions with different colors over the map as the values are 
summarized succinctly. Moreover, fusing the congestion 
information in path planning is straightforward in the pro-
posed algorithm which uses node map. Also note that previ-
ous works consider only the current congestion information 
for path planning which is discarded once it is used. How-
ever, real-time information might not be always available to 
the robot as real-world scenarios has problems of sensor 
failure, communication failure, etc. The proposed work uses 
both the current and historical information and the current 
information is prioritized whenever available. The historical 
information also enables a robot to ‘plan ahead’ its queued 
tasks, in future time. Further, previous works like [14] uses 
pedestrian classification using sample-based joint probabil-
istic data association filters and Gaussian mixture model 
which requires labeling and training. While, no data labeling 
or training is required in the proposed work which uses 
direct detection using cameras. In addition, previous works 
[4, 14] uses expensive Lidar sensors in the environment. 
Installation of such sensors is not feasible or impractical in 
terms of power supply, maintenance, cost, and scalability. 
On the other hand, the proposed approach uses inexpensive 
cameras in the corridors. Most buildings have security cam-
eras installed in passages and image data from such cameras 
can directly be used to estimate congestion in passages and 
efficient path planning of robots.

(16)Ngrids =
Wm × Hm

�w × �h
.

7  Conclusion

In this paper, we proposed a new HMRP planner which takes 
the influx of people in passages calculated from fixed exter-
nal cameras into consideration while planning safe robot 
paths. A grid and node map are formulated to estimate 
crowd in different sections of the map. Later, moving pixels 
detected in the passages are mapped to the corresponding 
edges increasing its heat value. The movement cost on the 
edges with large crowd is increased. Thereafter, any tra-
ditional planner can be used to estimate the shortest path. 
Robot navigation is affected by the direction of movement 
of people. Therefore, we improved the idea by also consid-
ering the direction of movement of people in increasing the 
movement cost in grids. With the inclusion of the current 
and historical crowd influx factor, HMRP estimates the paths 
which are less crowded and safe for navigation. A major ben-
efit of HMRP is that it can directly use the building or shop’s 
infrastructure which generally has fixed external cameras. In 
future, we plan to improve the algorithm by considering the 
width of the passages and test the algorithm in very narrow 
corridors. Estimation of congestion using on-board cameras 
fixed on the robot is also considered as future work.
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